Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB beta-lactamases, proteases, quorum sensing, and other virulence factors.
نویسندگان
چکیده
In members of the family Enterobacteriaceae, ampC, which encodes a beta-lactamase, is regulated by an upstream, divergently transcribed gene, ampR. However, in Pseudomonas aeruginosa, the regulation of ampC is not understood. In this study, we compared the characteristics of a P. aeruginosa ampR mutant, PAOampR, with that of an isogenic ampR+ parent. The ampR mutation greatly altered AmpC production. In the absence of antibiotic, PAOampR expressed increased basal beta-lactamase levels. However, this increase was not followed by a concomitant increase in the P(ampC) promoter activity. The discrepancy in protein and transcription analyses led us to discover the presence of another chromosomal AmpR-regulated beta-lactamase, PoxB. We found that the expression of P. aeruginosa ampR greatly altered the beta-lactamase production from ampC and poxB in Escherichia coli: it up-regulated AmpC but down-regulated PoxB activities. In addition, the constitutive P(ampR) promoter activity in PAOampR indicated that AmpR did not autoregulate in the absence or presence of inducers. We further demonstrated that AmpR is a global regulator because the strain carrying the ampR mutation produced higher levels of pyocyanin and LasA protease and lower levels of LasB elastase than the wild-type strain. The increase in LasA levels was positively correlated with the P(lasA), P(lasI), and P(lasR) expression. The reduction in the LasB activity was positively correlated with the P(rhlR) expression. Thus, AmpR plays a dual role, positively regulating the ampC, lasB, and rhlR expression levels and negatively regulating the poxB, lasA, lasI, and lasR expression levels.
منابع مشابه
The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma...
متن کاملDeep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response
Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملCo-regulation of β-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa
Development of β-lactam resistance, production of alginate and modulation of virulence factor expression that alters host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. In this study, we propose that a co-regulatory network exists between these mechanisms. We compared the promoter activities of ampR, algT/U, lasR, lasI, rhlR, rhlI and...
متن کاملA New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR
Pseudomonas aeruginosa pathogenic potential is controlled via multiple regulatory pathways, including three quorum sensing (QS) systems. LasR is a key QS signal receptor since it acts as a global transcriptional regulator required for optimal expression of main virulence factors. P. aeruginosa modulates the QS response by integrating this cell density-dependent circuit to environmental and meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 49 11 شماره
صفحات -
تاریخ انتشار 2005